Reductions in Circuit Complexity: An Isomorphism Theorem and a Gap Theorem
نویسندگان
چکیده
منابع مشابه
Reductions in Circuit Complexity: An Isomorphism Theorem and a Gap Theorem
We show that all sets that are complete for NP under non-uniform AC reductions are isomorphic under non-uniform AC-computable isomorphisms. Furthermore, these sets remain NP-complete even under non-uniform NC reductions. More generally, we show two theorems that hold for any complexity class C closed under (uniform) NC-computable many-one reductions. Gap: The sets that are complete for C under ...
متن کاملReductions in Circuit Complexity : An Isomorphism Theorem and a Gap Theorem . 1
We show that all sets that are complete for NP under non-uniform AC0 reductions are isomorphic under non-uniform AC0-computable isomorphisms. Furthermore, these sets remain NP-complete even under non-uniform NC0 reductions. More generally, we show two theorems that hold for any complexity class C closed under (uniform) NC1-computable many-one reductions. Gap: The sets that are complete for C un...
متن کاملAn Isomorphism Theorem for Circuit Complexity
We show that all sets complete for NC1 under AC0 reductions are isomorphic under AC0computable isomorphisms. Although our proof does not generalize directly to other complexity classes, we do show that, for all complexity classes C closed under NC1-computable many-one reductions, the sets complete for C under NC0 reductions are all isomorphic under AC0-computable isomorphisms. Our result showin...
متن کاملAn isomorphism theorem for digraphs
A seminal result by Lovász states that two digraphs A and B (possibly with loops) are isomorphic if and only if for every digraph X the number of homomorphisms X → A equals the number of homomorphisms X → B. Lovász used this result to deduce certain cancellation properties for the direct product of digraphs. We develop an analogous result for the class of digraphs without loops, and with weak h...
متن کاملAn optimal gap theorem
By solving the Cauchy problem for the Hodge-Laplace heat equation for d-closed, positive (1,1)-forms, we prove an optimal gap theorem for Kähler manifolds with nonnegative bisectional curvature which asserts that the manifold is flat if the average of the scalar curvature over balls of radius r centered at any fixed point o is a function of o(r−2). Furthermore via a relative monotonicity estima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer and System Sciences
سال: 1998
ISSN: 0022-0000
DOI: 10.1006/jcss.1998.1583